Probabilités

BCPST I — 2022/2023

I — EXEMPLES D'EXPÉRIENCES ALÉATOIRES

II — Univers – Évènements

Une expérience **aléatoire** est un protocole dont on ne pas prédire le résultat à l'avance. La collection des résultats possibles de l'expérience forme un ensemble.

Définition 2.1 — Expérience aléatoire — Univers

- L'univers d'une expérience aléatoire est défini par la donnée d'un ensemble non vide Ω ;
- tout élément ω de l'ensemble Ω est un **résultat** de l'expérience;
- un **événement aléatoire** est un sous-ensemble de Ω ;
- soit $\omega \in \Omega$: le singleton $\{\omega\}$ est un **événement élémentaire**.

Langage probabiliste	Langage ensembliste
Résultat possible	ω , élément de Ω
Évènement	A , partie de Ω
Évènement élémentaire	$\{\omega\}$, singleton de Ω
Évènement certain	Ω
Évènement impossible	Ø
L'événement «A ne se produit pas »	\overline{A}
L'événement « A ou B »	$A \cup B$
L'événement « A et B »	$A \cap B$
A et B sont incompatibles	$A \cap B = \emptyset$
A implique B	$A \subset B$

Vocabulaire L'ensemble des événements s'appelle la **tribu** des événements. On note souvent $\mathscr T$ l'ensemble des événements. On qualifie $(\Omega, \mathscr T)$ d'**espace probabilisable**.

Dans tout ce chapitre, et durant toute l'année, Ω est un ensemble fini et les événements sont exactement les sous-ensembles de Ω .

Définition 3.1 — Probabilité

On appelle **probabilité** sur $(\Omega, \mathcal{P}(\Omega))$ toute application P de $\mathcal{P}(\Omega)$ dans [0; 1] telle que

- 1) $P(\Omega) = 1$;
- 2) si A et B sont deux événements incompatibles alors

$$P(A \cup B) = P(A) + P(B)$$

Vocabulaire Sur l'espace probabilisable $(\Omega, \mathcal{P}(\Omega))$, il est possible de définir une probabilité P. Le triplet $(\Omega, \mathcal{P}(\Omega), P)$ s'appelle un **espace probabilisé**.

Proposition 3.2 — Propriétés d'une probabilité

Soit $(\Omega, \mathcal{P}(\Omega), P)$ un espace probabilisé.

- 1) $P(\emptyset) = 0$
- 2) Pour tout événement A, $P(\overline{A}) = 1 P(A)$
- 3) $Si A_1, A_2, \ldots, A_n$ sont n événements deux à deux incompatibles alors

$$P(A_1 \cup A_2 \cup \cdots \cup A_n) = \sum_{k=1}^n P(A_k)$$

4) Si A et B sont deux événements et que A implique B $(A \subset B)$ alors

$$P(B \setminus A) = P(B) - P(A)$$
 et $P(A) \le P(B)$

5) Si A et B sont deux événements alors

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Vocabulaire Un événement A tel que P(A) = 0 est dit **quasi-impossible**. Un événement A tel que P(A) = 1 est dit **quasi-certain**.

Propriété 3.3 — Définition d'une probabilité

Soit $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ un ensemble fini.

1) Soit P une probabilité sur Ω . Pour $i \in [0; n]$, on note $p_i = P(\omega_i)$. Les réels p_i vérifient

$$\forall i \in \llbracket \ 1 \ ; \ n \ \rrbracket, \qquad p_i \geqslant 0 \qquad et \qquad \sum_{i=1}^n p_i = 1$$

2) Réciproquement si $(p_1, p_2, ..., p_n)$ est un n-uplet de réels positifs et de somme 1, alors il existe une unique probabilité P sur Ω telle que $\forall i \in \llbracket 0 ; n \rrbracket$, $p_i = P(\omega_i)$.

3

DÉFINITION 3.4 — Équiprobabilité

Soit Ω un ensemble fini.

On appelle **probabilité uniforme** ou **équiprobabilité** sur Ω l'unique probabilité qui a la même valeur pour tous les événements élémentaires.

Dans ce cas, si A est un événement,

$$P(A) = \frac{\#(A)}{\#(\Omega)} = \frac{\text{nombre de cas où } A \text{ se réalise}}{\text{nombre de cas possibles}}$$

IV — PROBABILITÉ CONDITIONNELLE

DÉFINITION 4.1 — Probabilité conditionnée à un événement

Soit $(\Omega, \mathcal{P}(\Omega), P)$ un espace probabilisé, et A un événement tel que $P(A) \neq 0$.

La **probabilité sachant que A est réalisé** est définie par

$$\forall B \subset \Omega, \qquad P_A(B) = \frac{P(A \cap B)}{P(A)}$$

Définition 4.2 — Couple d'événements indépendants

Soit $(\Omega, \mathcal{P}(\Omega), P)$ un espace probabilisé.

Deux événements A et B sont indépendants si et seulement si

$$P(A \cap B) = P(A) \times P(B)$$

PROPOSITION 4.3 — Couple d'événements indépendants

Deux événements A et B de probabilités non nulles sont **indépendants** si et seulement si

$$P_A(B) = P(B)$$
 ou $P_B(A) = P(A)$

Définition 4.4 — Indépendance deux à deux, mutuelle

Soit $A_1, A_2, ... A_n$ une suite de n événements d'un espace probabilisé $(\Omega, \mathcal{P}(\Omega), P)$. Ces événements sont

1) deux à deux indépendants ssi

$$\forall (i,j) \in [1;n]^2, \qquad i \neq j \implies P(A_i \cap A_j) = P(A_i)P(A_j)$$

2) mutuellement indépendants si et seulement si

$$\forall \{i_1, i_2, \dots, i_r\} \subset [1; n], \qquad P(A_{i_1} \cap \dots \cap A_{i_r}) = P(A_{i_1}) \cdots P(A_{i_r})$$

L'indépendance mutuelle entraîne l'indépendance deux à deux, mais la réciproque est fausse.

Propriété 4.5

Soit $A_1, A_2, \ldots A_n$ une suite de n événements mutuellement indépendants. Soit $i \in [1; n-1]$, B un événement pouvant s'écrire comme réunion ou intersection des A_j ou de leurs complémentaires pour $1 \le j \le i$ et soit C un événement pouvant s'écrire comme réunion ou intersection des A_j ou de leurs complémentaires pour $i+1 \le j \le n$.

Alors B et C sont indépendants.

v — Trois formules essentielles

Тне́опѐме 5.1 — Formule des probabilités composées

Soit $(\Omega, \mathcal{P}(\Omega), P)$ un espace probabilisé et soit A_1, A_2, \ldots, A_n une suite d'événements tels que $P(A_1 \cap A_2 \cap \cdots \cap A_{n-1}) \neq 0$:

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1) \times P_{A_1}(A_2) \times P_{A_1 \cap A_2}(A_3) \times \cdots \times P_{A_1 \cap A_2 \cap \cdots \cap A_{n-2}}(A_{n-1}) \times P_{A_1 \cap A_2 \cap \cdots \cap A_{n-1}}(A_n)$$

DÉFINITION 5.2 — Système complet d'événements

On appelle **système complet d'événement** un p-uplet d'événements $(A_i)_{1 \le i \le p}$ de probabilité non nulle, deux à deux disjoints et dont l'union est égale à Ω :

I.
$$\forall i \in [1; p], \quad P(A_i) \neq 0;$$

2.
$$\forall (i,j) \in [1;p]^2$$
, $i \neq j \implies A_i \cap A_j = \emptyset$;

3.
$$\bigcup_{i=0}^{p} A_i = \Omega.$$

Тне́опѐме 5.3 — Formule des probabilités totales

Soit $(\Omega, \mathcal{P}(\Omega), P)$ un espace probabilisé et soit A_1, A_2, \ldots, A_n un système complet d'événements.

$$\forall B \subset \Omega, \qquad P(B) = \sum_{k=1}^{n} P(B \cap A_k)$$
$$= \sum_{k=1}^{n} P_{A_k}(B) P(A_k)$$

Тне́окѐме 5.4 — Formule de Bayes

Soit $(\Omega, \mathcal{P}(\Omega), P)$ un espace probabilisé et soit A et B deux événements de probabilités non nulles. On a

$$P_A(B) = \frac{P(B)}{P(A)} P_B(A)$$

